CORE MATHEMATICS (C) UNIT 2 TEST PAPER 8

1. The area of the cross-section of a tunnel of width 3.5 m was estimated using the following measurements, all taken from one side wall:

Distance from side (m)	0	0.5	1	1.5	2	2.5	3	3.5
Height (m)	1.1	1.6	1.7	1.9	1.9	1.7	1.6	1.1

Use the trapezium rule with the given data to estimate the area of the cross-section..

[5]

- 2. In the triangle ABC, AB = 3 cm, BC = 5 cm and CA = 6 cm. Calculate
 - (i) the smallest angle of the triangle, in radians to 2 decimal places,

[3]

(ii) the area of the triangle, in cm² to 1 decimal place.

[2]

3. (i) Expand $(3-x)^5$ by the binomial theorem, simplifying each term.

[5]

(ii) Hence find the expansion of $(3-x-x^2)^5$ in ascending powers of x as far as the term in x^2 .

[3]

- 4. Given that (x-3) is a factor of $f(x) = 2x^3 3x^2 + kx + 6$,
 - (i) find the value of the integer k.

[3]

(ii) Factorise f(x) completely.

[3]

(iii) Find the remainder when f(x) is divided by (2x-3).

[2]

5. Solve, for $0 \le x \le 360$, the equations

(i)
$$\tan (2x-45)^\circ = 1$$
,

[4]

(ii)
$$2 \sin^2 x^\circ + \cos x^\circ = 1$$
.

[5]

6. The gradient G of a curve at the point (x, y) is given by the formula

$$G = 6x^2 + 2x - 3$$
.

The curve passes through the origin.

(i) Find the coordinates of the other two points where the curve crosses the x-axis.

[7]

(ii) Sketch the curve.

[3]

CORE MATHEMATICS 2 (C) TEST PAPER 8 Page 2

7. The diagram shows the curves with equations

$$y = x^2 - 4x - 12$$
 and $y = k(x^2 - 4x - 12)$, where

k is a negative integer.

The distance between the maximum point on one curve and the minimum point on the other curve is 64 units.

- (i) Find the value of k.
- (ii) Find the area of the finite region contained between the two curves.

[7]

[5]

- 8. (i) The first three terms of an arithmetic sequence are -4, x, 5. Find
 - (a) the value of x,

[2]

(b) the 11th term of the sequence,

[2]

[5]

[6]

- (c) the smallest value of n for which the nth term of the sequence is more than 100.
- (ii) The sum of the first two terms of a geometric series is 36 and the sum to infinity is 38.4.
 - Find the two possible values of the common ratio and of the first term of the series.

CORE MATHS 2 (C) TEST PAPER 8 : ANSWERS AND MARK SCHEME

1. Area
$$\approx \frac{1}{2} (\frac{1}{2})(2.2 + 2(10.4)) = 5.75 \text{ m}^2$$

5

2. (i)
$$\cos C = (25 + 36 - 9)/60 = 13/15$$

Angle
$$ACB = 0.52$$
 radians

M1 A1 A1

(ii) Area =
$$15 \sin 0.52 = 7.5 \text{ cm}^2$$

8

8

9

10

3. (i)
$$(3-x)^5 = 3^5 + 5(3^4)(-x) + 10(3^3)(-x)^2 + 10(3^2)(-x)^3 + 5(3)(-x)^4 - x^5$$

= $243 - 405x + 270x^2 - 90x^3 + 15x^4 - x^5$

(ii)
$$(3-x-x^2)^5 = 243-405(x+x^2)+270(x+x^2)^2 - \dots = 243-405x-135x^2$$

4. (i)
$$54 - 27 + 3k + 6 = 0$$

$$k = -11$$

(ii)
$$f(x) = (x-3)(2x^2+3x-2) = (x-3)(2x-1)(x+2)$$

(iii) Remainder =
$$f(3/2) = 27/4 - 27/4 - 33/2 + 6 = -21/2$$

5. (i)
$$2x - 45 = 45, 225, 405, 585$$
 $x = 45, 135, 225, 315$ M1 A1 M1 A1

(ii)
$$2-2\cos^2 x + \cos x = 1$$
 $2\cos^2 x - \cos x - 1 = 0$
 $(2\cos x + 1)(\cos x - 1) = 0$ $x = 0, 120, 240, 360$

$$2\cos^2 x - \cos x - 1 = 0$$

$$(2\cos x + 1)(\cos x - 1) = 0$$

$$x = 0, 120, 240, 360$$

6. (i) Integrating,
$$y = 2x^3 + x^2 - 3x + c$$
 $y(0) = 0$ so $c = 0$

When y = 0, x(2x + 3)(x - 1) = 0 Points are (-3/2, 0), (1, 0)

(ii) Curve sketched, crossing axes at
$$(-3/2, 0)$$
, $(0, 0)$, $(1, 0)$

7. (i) Turning points where
$$2x - 4 = 0$$
 $x = 2$ $y = -16$, $y = -16k$ M1 A1 A1

Difference = $-16(k-1) = 64$, so $k = -3$ M1 A1

(ii) Curves cut x-axis where
$$(x + 2)(x - 6) = 0$$

$$x = -2, x = 6$$

$$-4\int_{2}^{6} (x^{2} - 4x - 12) dx = -4\left[\frac{x^{3}}{3} - 2x^{2} - 12x\right]_{-2}^{6} = -4\left(-72 - \frac{40}{3}\right) = \frac{1024}{3} \text{ M1 A1 A1 M1 A1}$$

8. (i) (a)
$$x = (5-4)/2 = \frac{1}{2}$$

(b)
$$T_{11} = -4 + 10(4.5) = 41$$

(c)
$$T_n = -4 + 9/2 (n-1) > 100$$
 when $n-1 > 208/9$ $n = 25$

$$n = 25$$

(ii)
$$a + ar = 36$$
,

$$a + ar = 36,$$
 $a/(1-r) = 38.4$
 $38.4(1-r)(1+r) = 36$ $1-r^2 = 15/16$

$$r = \pm 1/4$$

$$a = 36/(5/4) = 28.8$$
 or $a = 36/(3/4) = 48$